Working metabolism
Definition

- Energy expenditure during muscle work
 - Contribution to whole metabolism
Energy sources

Adenosine triphosphate, ATP
- Adenine
- Ribose
- High energy bond

Creatine phosphate (CP)
- For short term, high rates of energy production
- CP + ADP → ATP

Anaerobic glycolysis
- Glycogen
- Glucose
- ATP
- ATP
- Lactate

Oxidative phosphorylation
- Protein
- Free fatty acids
- Glucose
- Water + Carbon dioxide
Energy sources

- **Phosphagen system**
 - Sprinter
 - 8-10 seconds (100 m)

- **Glycogen-lactic acid system**
 - Swimmer
 - 1.3–1.6 minutes (400 m)

- **Aerobic respiration**
 - Marathon runner
 - Unlimited time (15 Km)
Aerobic load

- Aerobic means with „oxygen“
 - oxygen delivery = organism needs
 - waste products are CO2 and water

- Subgroups:
 - short aerobic – 2 – 8 min (lactat/aerobic)
 - mezzo aerobic – 8 – 30 min (mainly aerobic)
 - longterm aerobic - 30 min and more (aerobic)

- Aerobic endurance is built up by continual and interval running
 - continual running enhances the maximal oxygen usage \((\text{VO2max})\)
 - interval running enhances the effect of heart as a pump

- Aerobic threshold
 - point where organism starts to take energy from anaerobic sources
 - approx. in 65% of maximal heart frequency
Anaerobic load

- Anaerobic means without „oxygen“
 - organism depends upon energy reserves
 - waste products are accumulating, and oxygen debt is created
 - other similar activity is not possible until debt is „paid“
 - lactate and alactate anaerobic load

- Subgroups
 - short anaerobic – less than 25s (mainly alactate)
 - mezzo anaerobic - 25s - 60s (mainly lactate)
 - longterm anaerobic - 60s – 120s (lactate +aerobic)

- Anaerobic endurance is built up by repeating exercise with high load

- Anaerobic threshold
 - point where lactate starts to accumulate in muscles
 - between 85-90% of maximal heart frequency (approx. about 40 bpm higher than aerobic threshold)
Effect to heart

- **Athletes**
 - bradycardia – heart rate in rest under 50 bpm
 - ECG – ventricle hypertrophy, early repolarization
 - heart enlargement of X-rays
 - elevated cardial enzymes

- **Exercise zones of heart frequency**
 - resting zone - 60% - 70%
 - aerobic zone - 70% - 80%
 - anaerobic zone - 80% - 90%
 - critical zone 90% - 100%

Exercise Zones

<table>
<thead>
<tr>
<th>BEATS PER MINUTE</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>90%</td>
<td>180</td>
<td>176</td>
<td>171</td>
<td>167</td>
<td>162</td>
<td>158</td>
<td>153</td>
<td>149</td>
<td>144</td>
<td>135</td>
</tr>
<tr>
<td>80%</td>
<td>160</td>
<td>156</td>
<td>152</td>
<td>148</td>
<td>144</td>
<td>140</td>
<td>136</td>
<td>132</td>
<td>124</td>
<td>120</td>
</tr>
<tr>
<td>70%</td>
<td>140</td>
<td>137</td>
<td>133</td>
<td>130</td>
<td>126</td>
<td>123</td>
<td>119</td>
<td>116</td>
<td>109</td>
<td>105</td>
</tr>
<tr>
<td>60%</td>
<td>120</td>
<td>117</td>
<td>114</td>
<td>111</td>
<td>108</td>
<td>105</td>
<td>102</td>
<td>99</td>
<td>93</td>
<td>90</td>
</tr>
<tr>
<td>50%</td>
<td>100</td>
<td>98</td>
<td>95</td>
<td>93</td>
<td>90</td>
<td>88</td>
<td>85</td>
<td>83</td>
<td>78</td>
<td>75</td>
</tr>
</tbody>
</table>

- VO2 Max (Maximum effort)
- Anaerobic (Hardcore training)
- Aerobic (Cardio training / Endurance)
- Weight control (Fitness / Fat burn)
- Moderate activity (Maintenance / Warm up)
Physical load

- Vessel dilatation in muscles – increase in blood flow and oxygen delivery

- During excessive activity and slower oxygen supply, anaerobic glycolysis starts

- Lactate acid (lactate)
 - 80 % lactate returns back to the liver
After physical load

- When oxygen delivery is sufficient (after activity finishes):
 - Lactate – turns to CO2 and water
 - replenishment of ATP, phosphocreatine, glycogen
 - oxygen returns to hemoglobin, myoglobin and body fluids

- Additional oxygen that needs to be delivered to organism after physical activity is called the oxygen debt (A.V. Hill 1886-1977).
 - Excess Post-exercise Oxygen Consumption (EPOC)

- Replenishment of muscle and liver glycogen
 - carbohydrate diet
 - Several hours and days
Oxygen debt

Two main components of oxygen debt payback:

- alactate oxygen debt (fast component)
 - portion of oxygen needed for synthesis of muscle ATP and PC
- lactate oxygen debt (slow component)
 - portion of oxygen needed for lactate removal from muscle cells and blood
VO2 max

Parameter of stamina/endurance
- maximal amount of oxygen that is organism able to consume/deliver during the load
- ml/min/kg VO2 max
- built up: work between 65 and 85% of max. HR, at least for 20 min, 3-5 a week

Average amount of VO2 max
- men 3.0 l/min
- women 2.0 l/min
- athletes 6.0 l/min
External determinants of VO2

- **Factors**
 - Altitude – lowering pO2 means decrease in VO2max about 7% in altitude of 5000m
 - Age:
 - maximal VO2max is around 20yrs
 - decrease about 30% between the age of 30-65 yrs.
 - Gender:
 - Women have about 20% lower VO2max
 - Different composition, smaller heart with lower heart stroke, lower levels of Hb

<table>
<thead>
<tr>
<th>Vo2 max</th>
<th>Sport</th>
</tr>
</thead>
<tbody>
<tr>
<td>>75 ml/kg/min</td>
<td>Endurance Runners and Cyclists</td>
</tr>
<tr>
<td>65 ml/kg/min</td>
<td>Squash</td>
</tr>
<tr>
<td>60-65 ml/kg/min</td>
<td>Football (male)</td>
</tr>
<tr>
<td>55 ml/kg/min</td>
<td>Rugby</td>
</tr>
<tr>
<td>50 ml/kg/min</td>
<td>Volleyball (female)</td>
</tr>
<tr>
<td>50 ml/kg/min</td>
<td>Baseball (male)</td>
</tr>
</tbody>
</table>
Internal determinants of VO2

- Cardiac output (the amount of blood pumped out during 1 minute)
- Transport capacity (amount of Hb)
- Amount of muscles
Cardiac output

HRmax = 220 - Age
EF = 65%
Hormonal changes during physical activity

- catecholamines
- ADH
 - antidiuretic hormone
- ACTH, STH, TRH
 - adrenocorticotropic, somatotropic, thyreotropic hormone
- glucocorticoids, mineralocorticoids
- glucagon – insulin
- testosterone